Genetic Algorithm based Rule Extraction from Pruned Modified Fuzzy Hyperline Segment Neural Network for Pattern Classification

نویسندگان

  • S. B. Bagal
  • U. V. Kulkarni
چکیده

The Pruned modified fuzzy hyperline segment neural network (PMFHLSNN) is pruned extension of Fuzzy hyperline segment neural network (FHLSNN) with modification in the testing phase. In this paper, a genetic algorithm based rule extractor (GA-PMFHLSNN) is proposed to extract a small set of compact and comprehensible fuzzy if-then rules with high classification accuracy from the PMFHLSNN. After pruning, open hyperline segments are generated from the remaining hyperline segments and a "don't care" approach is adopted by GA rule extractor to minimize the number of features in the extracted rules with higher classification accuracy. The performance of FHLSNN, PMFHLSNN and GA-PMFHLSNN are evaluated using

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pruned Modified Fuzzy Hyperline Segment Neural Network and Its Application to Pattern Classification

The Fuzzy hyperline segment neural network (FHLSNN) is supervised classifier that forms n-dimensional hyperline segments (HLS) defined by two end points with a corresponding membership function for learning and testing. In this paper, the Pruned fuzzy hyperline segment neural network (PFHLSNN) and Pruned modified fuzzy hyperline segment neural network (PMFHLSNN) are proposed. The pruning method...

متن کامل

Modified Fuzzy Hyperline Segment Neural Network for Pattern Classification and Recognition

The Fuzzy Hyperline Segment Neural Network (FHLSNN) utilizes fuzzy set as pattern classes in which each fuzzy set is a union of fuzzy set hyperline segments. This is supervised classifier that forms n-dimensional hyperline segments defined by two end points with a corresponding membership function for learning and prediction. In this paper, we propose the modifications in the prediction phase o...

متن کامل

SUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS

This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from...

متن کامل

Fuzzy Hyperline Segment Neural Network Pattern Classifier with Different Distance Metrics

The Fuzzy Hyperline Segment Neural Network (FHLSNN) pattern classifier utilizes fuzzy set as pattern classes in which each fuzzy set is a union of fuzzy set hyperline segments. The Euclidean distance metric is used to compute the distances to decide the degree of membership function. In this paper, the use of other various distance metrics such as Manhattan, Squared Euclidean, Canberra and Cheb...

متن کامل

Forecasting Stock Market Using Wavelet Transforms and Neural Networks: An integrated system based on Fuzzy Genetic algorithm (Case study of price index of Tehran Stock Exchange)

The jamor purpose of the present research is to predict the total stock market index of Tehran Stock Exchange, using a combined method of Wavelet transforms, Fuzzy genetics, and neural network in order to predict the active participations of finance market as well as macro decision makers.To do so, first the prediction was made by neural network, then a series of price index was decomposed by w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016